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1. Introduction

Over the past six years, a new formalism combining the nice features of Ramond-Neveu-

Schwarz and Green-Schwarz approaches to quantization of the superstring [1] has been

developed. The formalism is called the pure spinor formalism as it involves twistor-like

variables which take values in the space P of pure spinors in ten dimensions.

More precisely, the pure spinor formalism involves a geometric sigma model describing

the maps of the worldsheet Σ to ten-dimensional super-Minkowski space, together with a

somewhat unconventional curved βγ-system which describes the maps of Σ to the space P.

In the minimal pure spinor formalism, only the worldsheet fields λα which are holomorphic

coordinates on P are used.

Although one can compute scattering amplitudes using the minimal pure spinor for-

malism, the absence of a composite b ghost in the minimal formalism makes the amplitude

prescription non-conventional. In the approach of [2], picture-changing operators are used

to construct a picture-raised version of the b ghost. Unfortunately, these picture-changing

operators are only Lorentz-invariant up to BRST-trivial terms, so manifest Lorentz covari-

ance is broken at intermediate stages in the computation.
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A more elegant approach [3] uses the so-called C
∨

ech cohomology language, where the

b ghost is viewed as a collection of C
∨

ech cochains of various degrees, from zero to three, on

the space of pure spinors:

b = (bα) + (bαβ) + (bαβγ) + (bαβγδ) . (1.1)

Here α etc. label the coordinate patches Uα on the space of pure spinors:

P = ∪α Uα (1.2)

and one can choose the coordinate patches to be in one-to-one correspondence with the

components of an unconstrained spinor, i.e. α = 1, . . . , 16. On the coordinate patch Uα,

the component λα of the pure spinor is not allowed to vanish.

In this approach, manifest Lorentz invariance is broken by working with C
∨

ech cochains

which are defined on the (intersections of) coordinate patches, in our case on the space P of

pure spinors. Although the space of pure spinors is a homogeneous space of the (euclidean

version of the) Lorentz group, a particular coordinate patch is not. So, it is aesthetically

more appropriate to work in a formalism where the choices of coordinates on P are not

necessary.

A well-known alternative to the C
∨

ech language in algebraic geometry is Dolbeault

language where instead of the locally defined holomorphic objects, one deals with the

globally defined non-holomorphic ones. In the context of two dimensional sigma models,

the Dolbeault version is formulated by including the anti-holomorphic coordinates λα on

P and the fermionic coordinates rα = dλα. In principle, there are two options — one

can treat these new coordinates as fields of the same worldsheet chirality as λα, as will be

done in this paper following [4], or as fields of the opposite worldsheet chirality, as is more

natural in the context of (0, 2) models [5].

After including the non-minimal worldsheet fields (λα, rα), it was shown in [4] how

to construct a composite b ghost and compute superstring scattering amplitudes as in

topological string theory without picture-changing insertions. The only subtletly in this

non-minimal prescription is that the composite b ghost contains factors of (λαλα)−1. When

functionally integrating over λα and λα in the scattering amplitude, these (λαλα)−1 factors

can cause a problem coming from the functional integration region where all components

of λα are zero. In [4], it was shown that this problem can be avoided for amplitude

computations up to two loops, but it was not shown how to resolve this problem for

computations with more than two loops.

In this paper, it will be shown how to resolve this problem for arbitrary multiloop

amplitudes by constructing a regularized version of the b ghost, bε, which is non-singular

when (λαλα) → 0. The regularized b ghost will be defined as

bε = e−ε(wαwα+···)b (1.3)

where ε is a positive constant, wα and wα are the conjugate momenta to λα and λα, and

. . . is chosen such that (wαwα + · · ·) is well-defined, i.e. gauge invariant, and BRST-trivial.
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This regularization procedure can be viewed as an analogue of turning on a metric

perturbation in the (0, 2) model. Indeed, wαwα acts essentially as the Laplacian on func-

tions of pure spinors. If wα and wα were fields of opposite worldsheet chirality, the term

wαwα would serve as an inverse metric perturbation of a curved beta-gamma system:

βi∂γi + βi∂γi + α′giiβiβi (1.4)

which preserves conformal invariance for special metrics that are Ricci-flat (in the first

order approximation) [6]. In our case where the fields wα and wα have the same chirality,

perturbations like (1.4) would break conformal invariance. Nevertheless, both in the con-

text of (0, 2) models and in our case, perturbations like (1.4) can be made Q-exact. Thus,

conformal invariance would be preserved at the level of Q-cohomology.

Also, let us mention the rôle of metric perturbations (1.4) in the context of conventional

topological strings obtained by twisting (2, 2) supersymmetric sigma models. In particular,

for the A twist one obtains the theory with the Lagrangian [7]:

βi∂γi + βi∂γi + bi∂ci + bi∂ci (1.5)

that ensures that the path integral localizes onto the space of holomorphic maps of the

worldsheet into the complex target space, which has an infinite radius metric in this descrip-

tion. This theory is well-defined (for compact targets) on genus zero, but for higher genera

( in the trivial instanton sector) the zero modes of the β, β, b, b fields need regularization.

One can turn on the deformation to finite radius by adding the term:

α′{Q,
1

2
gii(biβi + biβi)} = α′

(
giiβiβi + fermions

)
(1.6)

which, upon proper treatment of the coupling to worldsheet topological gravity, induces

the celebrated [8] c(Hg ⊗ TX)) measure on the moduli space of Riemann surfaces of genus

g.

Since (1.3) will be defined such that bε = b + {Q,Ωε} for some Ωε, BRST-invariant

amplitudes are unaffected by the replacement of b with bε in the amplitude prescription

of [4]. Using the regularized b ghost, the multiloop amplitude prescription in the non-

minimal pure spinor formalism is therefore given by

A = lim
ε→0

∫
d3g−3τ

〈
N∏

r=1

∫
dzrUr(zr)

3g−3∏

s=1

∫
(µsbε) N

〉

(1.7)

where
∫

d3g−3τ〈∏N
r=1

∫
dzrUr(zr)

∏3g−3
s=1

∫
(µsb)〉 is the usual prescription of bosonic string

theory, N is the zero mode normalization factor defined in [4] which regularizes the func-

tional integral over the zero modes, and the right-moving contribution to A is being ignored.

Since BRST invariance implies that (1.7) is independent of the parameter ε, one can take

the limit ε → 0 at the end of the computation.

The choice of the ε-regularization is not unique. In the present paper we give one such

choice, in order to demonstrate that a completely regular expression for the amplitudes

exists. Although our construction can be motivated by the considerations of (1.6), there
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may well exist a much simpler regularization. At present, for generic multiloop superstring

amplitude computations, it is still difficult to evaluate the limit ε → 0 of (1.7) since our

expression for bε is rather complicated.

However, for certain special amplitudes in which not all θα zero modes are absorbed

by the external vertex operators, the ε-regularization of the b ghost is unnecessary, and

it is easy to take the limit ε → 0 of (1.7). These special amplitudes can contribute to

ten-dimensional F-terms in the effective action, i.e. terms in which the superspace action

involves integration over fewer than 16 θ’s for N=1 D=10, or fewer than 32 θ’s for N=2

D=10.

It is interesting that topological string methods are also useful for computing F-terms

in the four-dimensional effective action coming from Calabi-Yau compactification [9, 8, 10].

In [4], it was shown that these lower dimensional F-term computations can be reproduced

using a compactified four-dimensional version of the pure spinor formalism.

The paper is organized as follows. In section 2, the non-minimal pure spinor formalism

will be reviewed. In section 3, the regularized b ghost will be constructed using the heat

kernel method. In section 4, the multiloop amplitude prescription will be defined using the

regularized b ghost bε, and it will be shown that this prescription simplifies for amplitudes

which contribute to ten-dimensional F-terms.

2. Review of non-minimal formalism

2.1 Minimal formalism

The minimal pure spinor formalism for the superstring is constructed using the (xm, θα)

variables of d = 10 superspace where m = 0 to 9 and α = 1 to 16, together with the

fermionic conjugate momenta pα. Furthermore, one introduces a bosonic spinor ghost λα

which satisfies the pure spinor constraint

λαγm
αβλβ = 0 (2.1)

where γm
αβ are the symmetric 16 × 16 d = 10 Pauli matrices. Because of the pure spinor

constraint on λα, its conjugate momentum wα is defined up to the gauge transformation

δwα = Λm(γmλ)α, (2.2)

which implies that wα only appears through its Lorentz current Nmn, ghost current J , and

stress tensor Tλ. These gauge-invariant currents are defined by

Nmn =
1

2
wγmnλ, J = wαλα, Tλ = wα∂λα. (2.3)

The worldsheet action for the left-moving matter and ghost variables is

S =

∫
d2z

(
1

2
∂xm∂xm + pα∂θα − wα∂λα

)
, (2.4)

and the right-moving variables will be ignored throughout this paper. For the Type II

superstring, the right-moving variables are similar to the left-moving variables, while for

the heterotic superstring, the right-moving variables are the same as in the RNS heterotic

formalism.

– 4 –
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Physical open string states in the minimal pure spinor formalism are defined as ghost-

number one states in the cohomology of the nilpotent BRST operator

Q =

∫
dz λαdα (2.5)

where

dα = pα − 1

2
γm

αβθβ∂xm − 1

8
γm

αβγmγδθ
βθγ∂θδ (2.6)

is the supersymmetric Green-Schwarz constraint.

Although one can compute scattering amplitudes using the minimal formalism, the

lack of a composite b ghost satisfying {Q, b} = T makes the amplitude prescription uncon-

ventional. It is easy to see that the minimal formalism does not contain such a composite

b ghost since the gauge-invariant combinations of wα in (2.3) all carry zero ghost number,

so there are no gauge-invariant operators of negative ghost number.

2.2 Non-minimal worldsheet variables

As shown in [4], this difficulty can be resolved by adding non-minimal variables to the

formalism which allow the construction of a composite b ghost. The new non-minimal

variables consist of a bosonic pure spinor λα and a constrained fermionic spinor rα satisfying

the constraints

λαγαβ
m λβ = 0 and λαγαβ

m rβ = 0. (2.7)

In d=10 Euclidean space where complex conjugation flips the chirality of spacetime spinors,

λα can be interpreted as the complex conjugate to λα. The worldsheet action for the non-

minimal pure spinor formalism is

∫
d2z

(
1

2
∂xm∂xm + pα∂θα − wα∂λα − wα∂λα + sα∂rα

)
(2.8)

where wα and sα are the conjugate momenta for λα and rα with +1 conformal weight.

Just as wα can only appear in the gauge-invariant combinations

Nmn =
1

2
(wγmnλ), J = wαλα, Tλ = wα∂λα, (2.9)

the variables wα and sα can only appear in the combinations

Nmn =
1

2
(wγmnλ − sγmnr), J = wαλα − sαrα, Tλ = wα∂λα − sα∂rα, (2.10)

Smn =
1

2
sγmnλ, S = sαλα, (2.11)

which are invariant under the gauge transformations

δwα = Λ
m

(γmλ)α − φm(γmr)α, δsα = φm(γmλ)α (2.12)

for arbitrary Λ
m

and φm.
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In order that the non-minimal variables do not affect the cohomology, the “minimal”

pure spinor BRST operator Q =
∫

dz λαdα will be modified to the “non-minimal” BRST

operator

Qnonmin =

∫
dz (λαdα + wαrα) . (2.13)

The new term
∫

dzwαrα is invariant under the gauge transformation of (2.12) and implies

through the usual quartet argument that the cohomology is independent of (λα, wα) and

(rα, sα).

The ghost-number operator in the non-minimal formalism is naturally defined as

∫
dz(λαwα − λαwα) (2.14)

so that λα carries ghost-number +1 and λα carries ghost-number −1. The corresponding

ghost-number anomaly was computed in [4] to be +3, so the non-minimal formalism can

be treated as a critical topological string theory.

A simple way to understand the value +3 of the ghost number anomaly is to look at

the way the measure for the non-minimal fields is defined. The issue is the zero modes.

On a genus g Riemann surface, the field wα has 11g zero modes, λα has 11 zero modes,

and similarly for wα, λα, sα and rα. The measure on w, λ zero modes is defined using the

holomorphic top form Ω on the space P of pure spinors:

DwαDλα ∼ Ω1−g , Ω =
d11λ

λ3
= λ7

+dλ+ ∧ d10uab (2.15)

where we used the local parameterization of the pure spinor in the form:

λ = λ+

(
1, uab, u[abucd]

)
.

The form Ω has weight +8 under the symmetry generated by (2.14). So, the measure factor

Ω1−g has charge 8(1 − g) on the genus g surface. At the same time, the measure on λ, r

fields is defined canonically, as the fermions r are in the antiholomorphic tangent bundle

to P. The zero modes of λ, r and the corresponding momenta bring a factor

DwαDλαDsαDrα ∼ Ω
1−g

,

where

Ω = d11λd11r

has charge −11 under (2.14). Thus, the total anomalous charge is +3(g − 1) on the genus

g Riemann surface, as claimed.

2.3 C
∨

ech and Dolbeault

The addition of non-minimal variables and the construction of Qnonmin can be understood

as standard techniques which are used in relating C
∨

ech and Dolbeault cochains. To describe

C
∨

ech cochains, first express the space of pure spinors P as the union of coordinate patches

– 6 –
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Uα for α = 1 to 16 where the component λα of the pure spinor is required to be non-

vanishing on Uα. The analysis of anomalies of the curved βγ-system on the pure spinor

space implies that the point λ = 0 is not in P [11], thus one can always find α such that a

given point λ ∈ P belongs to the coordinate patch Uα. So P = ∪αUα.

The C
∨

ech k-cochain is an object ψα0α1...αk
which is holomorphic on the intersection

Uα0α1...αk
= Uα0

∩ Uα1
∩ . . . ∩ Uαk

(2.16)

and which obeys

(δψ)α0α1...αk
≡ ψα1α2...αk

− ψα0α2...αk
+ · · · (−1)kψα0α1...αk−1

= 0 . (2.17)

The standard way to relate C
∨

ech and Dolbeault cochains is to use the so-called partition

of unity (cf. [5]). In the case of the space of pure spinors it can be taken to be:

ρα =
1

(λλ)
λαλα (2.18)

where the functions ρα vanish outside the corresponding domains Uα, and they sum to

unity
16∑

α=1

ρα = 1.

Note that (λλ) denotes
∑16

β=1 λβλβ and repeated indices are not assumed to be summed

over in this subsection.

Now, given a C
∨

ech cochain satisfying (2.17), one can define the corresponding Dolbeault

cocycle, i.e. a ∂-closed differential form of type (0, p − 1):

ψ̂ =
1

p!

∑

α1,...,αp

ψα1...αpρα1
∂ρα2

∧ . . . ∧ ∂ραp . (2.19)

An important generalization of this well-known construction consists of replacing the func-

tion valued cochains (ψ...) by cochains which take values in some (super)commutative

algebra, of even complex, and by replacing the operator ∂ by the general operator ∂ + Q

where Q is the differential in this complex. The resulting globally defined form ψ̂ obeys

(∂ + Q)ψ̂ = 0

iff the C
∨

ech cochain verifies

(δ + Q)ψ = 0.

To compare with the non-minimal formalism described in the previous subsection, define

Q =

16∑

α=1

∫
dz λαdα and ∂ =

16∑

α=1

∫
dz wαrα (2.20)

so that Qnonminψ̂ = (∂ + Q)ψ̂. Using this definition, one finds in (2.19) that

∂ρα =
(λλ)rα − (rλ)λα

(λλ)2
λα. (2.21)

– 7 –
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2.4 Construction of b ghost

Although there is no globally defined operator in the minimal formalism satisfying {Q, b} =

T , a b ghost can be constructed in the non-minimal formalism using the operators [Gα,

H [αβ], K [αβγ], L[αβγδ]] which carry zero ghost-number and satisfy [4, 2]

{Q,Gα} = λαT, [Q,H [αβ]] = λ[αGβ], {Q,K [αβγ]} = λ[αHβγ],

[Q,L[αβγδ]] = λ[αKβγδ], λ[αLβγδκ] = 0. (2.22)

As discussed in [3], this construction can be naturally understood in C
∨

ech language by

defining

b = (bα) + (bαβ) + (bαβγ) + (bαβγδ) (2.23)

where [(bα), (bαβ), (bαβγ), (bαβγδ)] are C
∨

ech cochains of degree zero to three defined by

(bα) =
Gα

λα
, (bαβ) =

H [αβ]

λαλβ
, (bαβγ) =

K [αβγ]

λαλβλγ
, (bαβγδ) =

L[αβγδ]

λαλβλγλδ
. (2.24)

It is not difficult to show that (2.22) implies that {Q + δ, b} = T . Using the methods of

the previous subsection, the corresponding globally defined Dolbeault form is therefore

b =
λαGα

(λλ)
+

λαrβH [αβ]

(λλ)2
− λαrβrγK [αβγ]

(λλ)3
− λαrβrγrδL

[αβγδ]

(λλ)4
, (2.25)

which satisfies {Qnonmin, b} = T .

Finally, to construct a bnonmin ghost satisfying {Qnonmin, bnonmin} = Tnonmin where

Tnonmin = T + wα∂λα − sα∂rα, one defines bnonmin = b + sα∂λα. Plugging in the explicit

form of the operators [Gα,H [αβ],K [αβγ], L[αβγδ]], one finds that [4]

bnonmin = sα∂λα +
λα(2Πm(γmd)α − Nmn(γmn∂θ)α − Jλ∂θα − 1

4∂2θα)

4(λλ)

+
(λγmnpr)(dγmnpd + 24NmnΠp)

192(λλ)2
− (rγmnpr)(λγmd)Nnp

16(λλ)3

+
(rγmnpr)(λγpqrr)NmnNqr

128(λλ)4
. (2.26)

Note that throughout the rest of this paper, the subscript nonmin will be dropped

from bnonmin and Qnonmin. Instead, we shall sometimes use the subscript min, in order to

stress the use of the minimal formalism.

2.5 Amplitude prescription

Using the composite b ghost defined in (2.26), the naive topological prescription for N -point

g-loop amplitudes is

A =

∫

Mg,N

d3g−3τ

〈
3g−3∏

j=1

(

∫
dwjµj(wj)b(wj))

N∏

r=1

dzrU(zr)

〉

(2.27)
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where τj are the complex Teichmuller parameters, µj are the associated Beltrami differen-

tials,
∫

dzU(z) are the BRST-invariant integrated vertex operators which can be assumed

to be independent of the non-minimal fields, 〈 〉 denotes functional integration over the

worldsheet fields, and the right-moving contribution to A is being ignored. Since the

ghost-number anomaly of the non-minimal formalism is +3, this topological prescription

is reasonable. However, as explained in [4], there are two subtleties with this amplitude

prescription which are associated with the functional integration over the pure spinors.

The first subtlety is that the bosonic ghosts (λα, λα) have 22 non-compact zero modes,

and integration over these zero modes produces infinities when λ → ∞. Similarly, the

conjugate momenta (wα, wα) have 22g non-compact zero modes on a genus g surface which

also produce infinities when w → ∞. Fortunately, these infinities are cancelled by zeros

coming from integration over the zero modes of the fermionic variables (θα, rα) and their

conjugate momenta (pα, sα).

The 0/0 factors coming from integration over the bosonic and fermionic zero modes

can be regularized by inserting an operator N = e{Q,χ} into the integral over the zero

modes. Since N = 1 + {Q,Ω} for some Ω, the choice of χ does not affect BRST-invariant

expressions. A convenient choice for χ is [4]

χ = −λαθα −
g∑

I=1

(
1

2
N I

mnSmnI + JISI) (2.28)

where [N I
mn, JI , SI

mn, SI ] are the zero modes of [Nmn, J, Smn, S] of (2.9) and (2.10) obtained

by integrating these currents around the Ith a-cycle, e.g. N I
mn =

∮
aI

dzNmn(z).

With this choice,

N = exp

(

−λαλα − rαθα −
g∑

I=1

[
1

2
N I

mnN
mnI

+ JIJ
I
+

1

4
SI

mn dIγmnλ + SI λαdI
α

] )

,

(2.29)

which imposes an exponential cutoff for the non-compact bosonic zero modes. Although

N is not manifestly invariant under spacetime supersymmetry transformations or under

modular transformations of the genus g worldsheet, it is easy to show that it changes by

BRST-trivial quantities under these transformations. Since N only involves worldsheet

zero modes, these BRST-trivial quantities are harmless and cannot produce surface terms

in the integral over the Teichmuller moduli. Note that the regulator N is somewhat similar

to the projection form used in topological gauge theory to fix the fermionic gauge invariance

(see, e.g. [12]).

The second subtlety with (2.27) is more difficult to resolve and comes from the sin-

gularities in the b ghost of (2.26) when (λλ) → 0. Since the measure factor for the pure

spinors converges like (λλ)11 when (λλ) → 0, these singularities are dangerous if they

combine to diverge as fast as (λλ)−11. Since each b ghost can diverge like (λλ)−3, there

are potential problems with the amplitude prescription when there are more than three b

ghosts, i.e. when g¿2.

– 9 –
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As explained in [4], this second subtlety is related to the existence of the operator

ξ =
λαθα

λβλβ + rβθβ
= (λθ)

11∑

n=1

(−rθ)n−1

(λλ)n
(2.30)

which satisfies {Q, ξ} = 1 and diverges like (λλ)−11. Since QV = 0 implies that Q(ξV ) = V ,

the existence of the operator ξ naively implies that the BRST cohomology is trivial. So if

operators which diverge as (λλ)−11 are allowed in the Hilbert space, the BRST cohomology

becomes trivial and one should expect to encounter problems in correlation functions and

scattering amplitudes.

It is instructive to give the C
∨

ech picture of the ξ-operator. It is given by the inhomo-

geneous cochain:

ξ =

(
θα

λα

)
+

(
θαθβ

λαλβ

)
+ . . . +

(
θ1 . . . θ16

λ1 . . . λ16

)
(2.31)

which obeys:

δξ + Qminξ = 1 . (2.32)

In the following section, this second subtlety will be resolved by constructing a regularized

version of the b ghost which is non-singular when (λλ) → 0. After replacing the b ghost

with its regularized version, it will be possible to use the prescription of (2.27) to compute

arbitrary multiloop amplitudes.

3. Regularization of b Ghost

3.1 Regularization of local operators

In our regularization method, we will deal with operators such as the b ghost which involve

singular-looking expressions like
1

(λλ)l

with l < 11. It is important to show that correlation functions of such operators are finite in

the pure spinor βγ system. To this end we shall produce now a Q-invariant regularization,

which does not change the Q-cohomology class of an operator, while making it explicitly

non-singular.

The idea of this regularization can be first explained in the example of quantum me-

chanics, where we do not deal with the issue of Q-invariance. So let us first study the

quantum mechanics of a particle with zero Hamiltonian in a phase space with the coordi-

nates (pm, qm) for m = 1 to d. Suppose we face the following problem:

Let Ol(q) be a function which has a pole of order l at the point q = 0. Then, naively,

the correlation function

〈Ol1Ol2 . . .Olp〉 =

∫
ddq Ol1(q)Ol2(q) . . .Olp(q) (3.1)

is singular when l1 + l2 + · · · + lp ≥ d.
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Now imagine adding the Hamiltonian ε2∆ = ε2gmnpmpn where ε is a constant. As

long as the operators Olk(q) are separated and satisfy the individual conditions lk < d, the

smearing due to the heat kernel evolution will make them non-singular. Indeed, we have

the heat kernel regularization of local operators:

Ol(q) 7→ Ol,ε(q) = eε2∆Ol(q) = e−ε2gmnpmpnOl(q)

=
1

(4π)
d
2

∫
ddf e−f2

eiεfmpmOl(q) =
1

(4π)
d
2

∫
ddf e−f2Ol(q + εf)

=
1

(4πε2)
d
2

∫
ddq′ e−

1

ε
(q−q′)2Ol(q

′) (3.2)

where q′ = q + εf . Note that in the above derivation, gmn is assumed to be constant and

the momenta pm are treated as operators.

Now, as long as l < d, the integral in (3.2) converges, and is non-singular at q = 0:

Ol,ε(q → 0) ∝ ε−l < ∞. (3.3)

So the heat kernel regularization has “smeared out” the singularity of Ol(q) at q = 0. A

similar regularization will be now proposed for observables on the pure spinor space such

that

O(λ, λ) 7→ Oε(λ, λ) = eε2∆O(λ, λ). (3.4)

3.2 Regularization in pure spinor space

Since wα and wα are the conjugate momenta to λα and λα, a naive guess for the Laplacian

on pure spinor space is ∆ = wαwα. So the naive generalization of (3.2) to pure spinors is

Oε(λ, λ) =
1

(4π)11

∫
d11fd11f e−fαfαeiε(fαwα+fαwα)O(λ, λ)

=
1

(4π)11

∫
d11fd11f e−fαfαO(λ′, λ

′
) (3.5)

where λ′ = λ+ εf , λ
′
= λ+ εf , and fα and fα are pure spinors. However, since λ′ = λ+ εf

is not necessarily a pure spinor, this definition needs to be modified. The problem is that

wα and wα are not gauge-invariant under (2.2) and (2.12), so their commutation relations

with λα and λα are not well-defined.

Gauge-invariant versions of wα and wα can be defined as

Wα = (λf)−1(−1

8
(λγmnw)(γmnf)α − 1

4
(λw)fα),

W
α

= (fλ)−1(−1

8
(λγmnw)(γmnf)α − 1

4
(λw)fα) (3.6)

where fα and fα are constant pure spinors. Using the identity

δγ
βδδ

α =
1

2
γm

αβγγδ
m − 1

8
(γmn)α

γ(γmn)β
δ − 1

4
δγ
αδδ

β (3.7)
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which can be proven by contracting both sides of (3.7) with γαβ
p , γαβ

pqr or γαβ
pqrst, one finds

that

(λf)wα =
1

2
(wγmf)(γmλ)α − 1

8
(λγmnw)(γmnf)α − 1

4
(wλ)fα. (3.8)

So in the gauge wγmf = wγmf = 0, Wα = wα and W
α

= wα.

Note that Wα can be written more compactly as:

Wα =
1

4
(N/λ−1

α − Jλ−1
α ) (3.9)

where

λ−1 =
1

λf
f (3.10)

Although the global gauge-invariant differential operators on P are polynomials in Nmn

and J , which act by “rotations” which preserve the point λ = 0, the parameters of the

“rotations” in (3.9), (3.10) are singular at λ = 0, allowing the operators Wα to shift the

“bad” point λ = 0 in what follows.

One can therefore define

Oε(λ, λ) =
1

(4π)11

∫
d11fd11f e−fαfαeiε(fαWα+fαW

α
)O(λ, λ) (3.11)

as a gauge-invariant version of (3.5). Although Wα of (3.6) needs to be normal-ordered, the

normal-ordering ambiguity commutes with λα and therefore does not affect the definition

of (3.11). Using the OPE’s of Nmn and J with λα, Oε(λλ) can be expressed as:

Oε(λ, λ) =
1

(4π)11

∫
d11fd11f e−fαfαO(λ′, λ

′
) (3.12)

where

λ′α = eiεfβWβλα = λα + εfα − [(λ + εf)γm(λ + εf)](γmf)α

4(λ + εf)βfβ

,

λ
′
α = eiεfβW

β

λ
α

= λα + εfα − [(λ + εf)γm(λ + εf)](γmf)α

4(λ + εf)βfβ
. (3.13)

Note that
∫

d11fd11f denotes
∫

ΩΩ(fαfα)3 where Ω = d11f
f3 and Ω = d11f

f
3 are the holomor-

phic and antiholomorphic top-forms on the space of pure spinors. As will be seen in the

following subsection, the additional factor of (fαfα)3 in the integration measure is absent

in the BRST-invariant generalization of (3.12).

It is easy to check that λ′ and λ
′
of (3.13) are pure spinors satisfying λ′γmλ′ = λ

′
γmλ

′
=

0. In fact, one way to derive (3.13) is to require that λ′ is a pure spinor and that λ′α =

λα + εfα + Ωm(γmf)α for some Ωm. The additional term proportional to Ωm comes from

the commutation relation

[Wα, λβ ] = δβ
α − 1

2
(γmλ)α(γmλ−1)β . (3.14)

Another way to understand (3.13) is to use the parameterization

λα = λ+
(
1, uab, u[abucd]

)
(3.15)
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of a pure spinor. Then, given two pure spinors, λ and εf = εf+
(
1, φab, φ[abφcd]

)
, one can

construct the third one by taking

λ′α =
(
λ+ + εf+

)
·
(
1, u′

ab, u
′
[abu

′
cd]

)
(3.16)

where

u′
ab =

λ+uab + εf+φab

λ+ + εf+
. (3.17)

This “addition of pure spinors” is equivalent to (3.13) for f = (1, 0, 0).

It will now be argued that Oε(λ, λ) in (3.12) is well-defined for all values of λ if one

assumes that O(λ′, λ
′
) ∼ (λ′λ

′
)−n where 0 ≤ n < 11. Firstly, note that when λα → 0 and

λα → 0, (3.13) implies that λ′α → fα and λ
′
α → fα. So as in the quantum-mechanical

example, the regularization O(λ, λ) 7→ Oε(λ, λ) smears out the singularity of O(λ, λ) at

λ = λ = 0. Since O(λ, λ) diverges slower than (λλ)−11, there are no singularites in Oε(λ, λ)

when λ = λ = 0.

Secondly, note that when (λ + εf)βfβ → 0, (3.13) implies that λ′ diverges. However,

since O(λ′, λ
′
) ∼ (λ′λ

′
)−n for n ≥ 0, Oε(λ, λ) remains finite when λ′ diverges.

Finally, suppose that λ is chosen such that λ′α = eiεfβWβλα vanishes. For (3.12) to be

well-defined, it is necessary that the measure factor d11fd11f converges faster than (λ′λ
′
)n

when λ′ → 0. It will be useful to consider separately the cases when λα = 0 and when

λα is non-zero. When λα = 0, (3.13) implies that λ′ = εf . So d11fd11f = ε22d11λ′d11λ
′
,

which converges as (λ′λ
′
)11 near λ′ = 0. When λα is non-zero, one can choose a Lorentz

frame in which λ+ is non-zero and uab = 0 in (3.15). Using the parameterization of (3.16),

λ′α → 0 implies that (λ+ + εf+) → 0 with u′
ab held fixed. Since (3.17) implies that

φab → (λ+ + εf+)
u′

ab

εf+ , one finds that d11fd11f converges like |λ+ + εf+|22 when λ′α → 0,

which is fast enough to cancel the (λ′λ
′
)−n divergence if n < 11.

3.3 BRST-invariant regulator

To make the regularization method of (3.11) BRST-invariant, it is convenient to introduce

constant bosonic pure spinors fα and fα, and constant constrained fermions gα and gα,

satisfying

gγmf = 0, gγmf = 0, fγmf = 0, fγmf = 0, (3.18)

and to define [fα, fα, gα, gα] to transform under BRST transformations as

[Q, fα] = 0, [Q, fα] = gα, {Q, gα} = fα, {Q, gα} = 0. (3.19)

The constraints of (3.18) imply that fα, fα, gα and gα each have eleven independent

components.

Geometrically, the Q-operator (3.19) can be identified with the operator

∂ + ιE

acting on the space Ω•,•(P) of all differential forms on the space of pure spinors. Here

E = λ ∂
∂λ

is the holomorphic Euler vector field. The familiar U(1) action on P is generated

by the vector field U = −i(E−E). In this picture gα = dfα, gα = dfα. The operator (3.19)

can be viewed as a “half” of the U(1) equivariant differential d + ιU ∼ Q + Q.
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We have

Q(fαgα) = fαfα + gαgα

which is the U(1)-equivariant symplectic form on P. Furthermore, if one defines

Wα = (λf)−1

(
1

4
Nmn(γmnf)α − 1

4
Jfα

)
,

V α = (fλ)−1(
1

4
Smn(γmnf)α − 1

4
Sfα), (3.20)

one finds that

[Q,Wα] = (λf)−1

(
1

8
(λγmnd)(γmnf)α +

1

4
(λd)fα +

1

4
Nmn(γmng)α − 1

4
Jgα

)
− (λg)

(λf)
Wα,

{Q,V α} = (fλ)−1

(
1

4
N

mn
(γmnf)α − 1

4
Jfα

)
− (fr)

(fλ)
V α . (3.21)

Up to terms involving fermions, it is easy to verify that fαWα + fαWα = Q(gαWα +

fαV α). Therefore, a BRST-invariant generalization of (3.11) is

Oε(λ, λ) =

∫
d11fd11fd11gd11g e−(fαfα+gαgα)eiεQ(gαWα+fαV α)O(λ, λ) , (3.22)

or, in a more concise way:

Oε(λ, λ) =

∫

P
e−fαfα+dfα∧dfα

eiεQ(dfαWα+fαV α)O(λ, λ) . (3.23)

The integration measure in (3.23) is defined by simply expanding the exponential until

the top degree form, i.e. the 22-form, is produced. So in the BRST-invariant version of

Oε(λ, λ), the integration measure is simply ΩΩΣΣ where

Ω =
d11f

f3
, Ω =

d11f

f
3 , Σ = f3d11g, Σ = f

3
d11g, (3.24)

are the top degree forms.

As before, one can show that Oε(λ, λ) is well-defined at λ = λ = 0 as long as O(λ, λ)

diverges slower than (λλ)−11. And since Oε = O + {Q,χε} for some χε, BRST-invariant

amplitudes involving Oε will be independent of the parameter ε.

3.4 Regularized b ghost

The regularization method of (3.22) is easily generalized to the worldsheet operator b(z)

of (2.26) by defining

bε(y) =

∫
d11fd11fd11gd11g e−(fαfα+gαgα) b′(y) (3.25)

where

b′(y) = eiε{Q, g
H

dzU(z)+f
H

dzV (z)} b(y) e−iε{Q, g
H

dzU(z)+f
H

dzV (z)}, (3.26)

Uα(z) and V α(z) are the holomorphic currents defined in (3.20), and the contour integrals

in (3.26) go around the point y.

Since bε(y) = b(y) + {Q,χε(y)} for some χε(y), {Q, bε(y)} = T (y) and BRST-invariant

scattering amplitudes are independent of the value of ε. Furthermore, since b(y) diverges

slower than (λλ)−11, bε(y) has no singularities at λ(y) = λ(y) = 0.
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4. Multiloop amplitude prescription

Substituting the regularized bε ghost of (3.25) for the b ghost, the N -point g-loop amplitude

prescription of [4] becomes

A = lim
ε→0

∫
d3g−3τ

〈
3g−3∏

j=1

(

∫
dwjµj(wj)bε(wj))

N∏

r=1

∫
dzrUr(zr) N

〉
(4.1)

where N is the same regulator for the zero modes as defined in (2.29). For non-zero ε, the

functional integral is well-defined and, since bε = b + {Q,χε} for some χε, the amplitude

prescription is independent of ε up to possible surface terms. So one is free to take the

limit ε → 0 after performing the functional integral.

In the multiloop amplitude prescription of (4.1), the functional integral is vanishing

unless the integrand contributes 16 θ zero modes for open superstrings, or 32 θ zero modes

for closed Type II superstrings. Since the bε ghost is manifestly spacetime supersymmetric,

these θ zero modes can only come either from superfields in the external vertex operators

Ur or from the e−(λλ+rθ) term in the zero mode regulator N of (2.29).

To evaluate (4.1), it is useful to separate the correlation function into two types of

terms: terms in which at least one θ zero mode comes from the zero mode regulator N ,

and terms in which none of the θ zero modes come from the zero mode regulator. As will

now be explained, the first type of terms can contribute to F-terms in the ten-dimensional

effective action and are easier to evaluate since they do not require ε-regularization. The

second type of terms are more complicated to evaluate, however, it will be shown that they

only contribute near the region λ = λ = 0.

4.1 Ten-dimensional F-terms

Although one does not know how to construct off-shell D=10 superspace actions, one

can construct higher-derivative D=10 superspace actions which are functions of on-shell

linearized superfields. Ten-dimensional F-terms are defined as manifestly gauge-invariant

terms in the superspace effective action which cannot be written as integrals over the

maximum number of θ’s. In the massless vertex operator for open superstrings, the gauge-

invariant superfield of lowest dimension is W α(x, θ) whose lowest component is the gluino

of dimension 1
2 . Since N=1 D=10 superspace contains 16 θ’s, any term in the superspace

action involving M superfields W α which is integrated over the full superspace has dimen-

sion ≥ (M + 16)/2. Therefore, any term in the N=1 D=10 superspace action involving

M field-strengths which has dimension less than (M + 16)/2 is necessarily an N=1 D=10

F-term.

In the massless vertex operator for closed Type II superstrings, the gauge-invariant

superfield of lowest dimension is W αβ(x, θ, θ) whose lowest component is the Ramond-

Ramond field strength of dimension 1. Note that the dilaton and axion are dimension

zero fields, but they always appear with derivatives in the massless vertex operator. Since

N=2 D=10 superspace contains 32 θ’s, any term in the superspace action involving M

superfields W αβ which is integrated over the full superspace has dimension ≥ (M + 16).
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Therefore, any term in the N=2 D=10 superspace action involving M field-strengths which

has dimension less than (M + 16) is necessarily an N=2 D=10 F-term. For example, since

the curvature tensor Rmnpq has dimension 2, the term

∫
d10x

√
g∂LRM (4.2)

in the Type II effective action is an N=2 D=10 F-term if L + 2M < M + 16, i.e. if

L + M < 16.

If all θ zero modes come from superfields in the external vertex operators in (4.1),

the resulting term in the superspace effective action is expressed as an integral over the

maximum number of θ’s and therefore does not contribute to F-terms. However, if any

of the θ zero modes come from N , the resulting term in the superspace effective action

is expressed as an integral over a subset of the θ’s. Although this does not automatically

imply that it is an F-term (since it may be possible to rewrite the expression as an integral

over all the θ’s), it might contribute to F-terms.

So any term in the scattering amplitude which contributes to an F-term in the effective

action must receive at least one θ zero mode from N . It will now be shown that any such

term diverges slower than (λλ)−11 and therefore does not require ε-regularization of the b

ghost.

To show that terms receiving θ zero modes from N do not require ε-regularization,

first note that BRST invariance implies that the e−(λλ+rθ) term in N can be modified to

e−ρ(λλ+rθ) for any positive ρ. Because

e−ρ(λλ+rθ) = e{Q,−ρθλ} = 1 + {Q, ξρ} (4.3)

for some ξρ, BRST-invariant ampitudes are independent of the value of ρ.

Suppose one computes the amplitude 〈F (λ, λ) N〉 where F (λ, λ) is some BRST-

invariant operator. Then ρ-independence implies that the (−ρθr)n terms in

e−ρ(λλ+rθ) = e−ρλλ

(
1 +

11∑

n=1

1

n!
(−ρθr)n

)

can only contribute to 〈F (λ, λ) N〉 if
∫

d11λd11λ F (λ, λ) e−ρλλ has poles in ρ. But this

implies that F (λ, λ) diverges slower than (λλ)−11 since

∫
d11λd11λ (λλ)−l e−ρλλ ∝ ρl−11. (4.4)

So θ zero modes in N can only contribute to 〈F (λ, λ) N〉 if F (λ, λ) diverges slower than

(λλ)−11, which implies that ε-regularization is unnecessary. So any term which receives

θ zero modes from N can be evaluated by directly setting ε = 0 before performing the

correlation function.
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4.2 Terms requiring ε-regularization

For terms in which all θ zero modes come from the vertex operators, ρ-independence of the

amplitude implies that (4.4) cannot have poles in ρ, so l ≥ 11. Therefore,
∫

d11λd11λ (λλ)−l

diverges and ε-regularization of the b ghost is necessary. Although the computation of these

terms is complicated, integration over the non-minimal fermions rα will imply that the only

contribution to these terms comes from the region near λ = λ = 0.

To show that the only contribution come from the region near λ = λ = 0, first note

that the unregularized b ghost of (2.26) commutes with the conserved charges

∮
dz(rαsα − λαwα) and

∮
dzλαsα. (4.5)

In other words, all terms in the unregularized b ghost have r-charge opposite to their λ-

charge, and are invariant under the shift δrα = cλα for constant c. Furthermore, since (4.4)

has no poles in ρ, ρ-independence implies that one can directly set ρ = 0 in N so that

Nρ=0 = exp

(
g∑

I=1

[
− 1

2
N I

mnN
mnI − JIJ

I − 1

4
SI

mn dIγmnλ − SI λαdI
α

] )
. (4.6)

One can check that (4.6) also commutes with (4.5), so if the vertex operators Ur are chosen

to be independent of the non-minimal variables, the unregularized integrand

3g−3∏

s=1

b(ws)

N∏

r=1

Ur(zr) Nρ=0 (4.7)

commutes with the charges of (4.5).

This implies that before performing ε-regularization of these terms, the integrand

of (4.1) has the form ∑

k≥0

C
α1...α11+k

k

rα1
. . . rα11+k

(λλ)11+k
(4.8)

where C
α1...α11+k

k are operators which carry zero λ-charge and zero r-charge, and which

satisfy λα1
C

(α1...α11+k)
k = 0.

Since rα has eleven zero modes, at least k of the (11+k) r’s in (4.8) must contribute non-

zero modes. Furthermore, when k = 0, at least one of the eleven r’s in (4.8) must contribute

a non-zero mode because of the invariance under δrα = cλα. So for the correlation function

to be non-vanishing, terms coming from the ε-regularization must provide non-zero modes

of sα which can contract with these non-zero modes of rα.

These sα non-zero modes can come from V α of (3.20) through the regularization factor

eiεgα

H

dzV α
in bε, which means that each sα non-zero mode comes multiplied by a factor of

ε. So these terms vanish in the limit ε → 0, except near λ = λ = 0 where ε-regularization

can produce poles in ε. Therefore, to evaluate terms in which all θ zero modes come from

vertex operators, one only needs to evaluate the functional integral
∫

d11λd11λ near the

point λ = λ = 0. It might be possible to explicitly evaluate the contributions of these delta

functions at λ = λ = 0, however, this will not be attempted here.
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